sábado, 10 de septiembre de 2016

RESPIRACION CELULAR. OTRAS VÍAS CATABÓLICAS



Sí la mayoría de los organismos no se alimentan directamente de glucosa. ¿cómo obtienen energía a partir de las grasas o proteínas?. La respuesta está en que el ciclo de Krebs es un gran nudo del metabolismo energético. Otras sustancias alimenticias son degradadas y convertidas en moléculas capaces de ingresar al ciclo.

Las grasas se desdoblan en sus componentes glicerol y ácidos grasos. Estos últimos son fraccionados en fragmentos de dos carbonos e introducidos en el ciclo de Krebs como acetil CoA.

Las proteínas se degradan a aminoácidos, estos son desaminados (se les eliminan los grupos amino) y el esqueleto de carbonos se convierte en un grupo acetilo, ingresando al ciclo de Krebs. Los grupos amino si no se utilizan, se excretan como urea u otros desechos nitrogenados.


En el afán de analizar detenidamente cada paso de las reacciones metabólicas de fotosíntesis y respiración, perdemos la noción de estos procesos globalmente.
En la fotosíntesis, la energía lumínica se convierte en química y se fija carbono en compuestos orgánicos.

Los fotosintetizadores o autótrofos elaboran hidratos de carbono a partir de CO2 y agua y liberan O2 a la atmósfera. Son estos organismos los que mantienen estables las concentraciones de CO2, y O2 atmosféricos.

En la respiración aeróbica los compuestos orgánicos son degradados a CO2 y H2O con la concomitante producción de energía química bajo la forma de ATP.

FOTOSÍNTESIS

En la primera etapa o etapa lumínica, la energía del sol es captada por la clorofila y otros pigmentos accesorios, provocando una serie de reacciones de óxido--reducción que propulsan la síntesis de ATP; la reducción de la coenzima NADP a NADPH y la oxidación de moléculas de H2O liberando O2 al medio. En la siguiente etapa o ciclo de Calvin el NADPH y el ATP (productos de la anterior etapa) se utilizan para reducir al CO2 que el vegeta1 toma del medio, a carbono orgánico. Si falta alguno de estos sustratos, el proceso se detiene.

Son necesarias 6 vueltas al c1clo para formar una molécula de glucosa partir de 2 moléculas de PGAL.

Este compuesto también se puede utilizar como material inicial para elaborar otros compuestos orgánicos que la célula necesita.

RESPIRACIÓN

La oxidación de la glucosa es una fuente principal de energía en la mayoría de las células.
La primera fase de este proceso es la glucólisis, en la cual la molécula de glucosa (6C), se escinde en dos moléculas de ácido pirúvico (3C). Este paso produce un rendimiento neto de 2 moléculas de ATP y dos moléculas de NADH.

La segunda fase de la degradación de la glucosa es la respiración aeróbica que ocurre en tres etapas: ciclo de Krebs, transporte de electrones y fosforilación oxidativa.

En ausencia de O2 el ácido pirúvico de la glucólisis se convierte en etanol o ácido láctico mediante fermentación. En el curso de la respiración las moléculas de ácido pirúvico se fraccionan en grupos acetilos; los cuales ingresan al ciclo de Krebs. En este ciclo los grupos acetilos se oxidan por completo a CO2, se reducen cuatro aceptores de electrones (tres NAD+ y Un FAD) y se forma GTP.

La etapa final de la respiración es el transporte de electrones y la fosforilación oxídativa (se dan acopladamente). En este paso intervienen una cadena de transportadores de electrones que transportan los electrones de alta energía aceptados por el NADH y el FADH2 viajando cuesta abajo hacia el oxígeno.

En tres puntos de su descenso por toda la cadena transportadora, se liberan grandes cantidades de energía que propulsan el bombeo de protones hacía el espacio intermembranoso de la mitocondria. Esto crea un gradiente electroquímico a través de la membrana interna. Cuando los protones atraviesan el complejo ATP sintetasa hacia la matriz, la energía liberada se utiliza para sintetizar moléculas de ATP. Este mecanismo por el cual se cumple la fosforilación oxidativa se conoce como hipótesis quimiosmótica.


RESPIRACION CELULAR III. MITOCONDRIA, Fermentación láctica


En esta reacción el NADH se oxida y el ácido pirúvico se reduce transformándose en ácido láctico.


La fermentación sea ésta alcohólica o láctica ocurre en el citoplasma.


ESQUEMA BIOQUÍMICO DEL PROCESO DE FERMENTACIÓN
A)     Alcohólica : 2 ácido pirúvico + 2 NADH  2 etanol + 2 CO2 + 2 NAD+
B)      Láctica : 2 ácido pirúvico + 2 NADH  2 ácido láctico + 2 NAD+


La finalidad de la fermentación es regenerar el NAD+ permitiendo que la glucólisis continúe y produzca una provisión pequeña pero vital de ATP para el organismo.

RESPIRACIÓN AERÓBICA
En presencia de oxígeno, la etapa siguiente de la degradación de la glucosa es la respiración, es decir la oxidación escalonada del ácido pirúvico a dióxido de carbono y agua.

La respiración aeróbica se cumple en dos etapas: el ciclo de Krebs y el transporte de electrones y la fosforilación oxidativa (estos dos últimos procesos transcurren acopladamente).

En las células eucariotas estas reacciones tienen lugar dentro de las mitocondrias; en las procariotas se llevan a cabo en estructuras respiratorias de la membrana plasmática.

Estructura de las Mitocondrias
Las mitocondrias están rodeadas por dos membranas, una externa que es lisa y una interna que se pliega hacia adentro formando crestas. Dentro del espacio interno de la mitocondria en torno a las crestas, existe una solución densa (matriz o estroma) que contiene enzimas, coenzimas, agua, fosfatos y otras moléculas que intervienen en la respiración.

La membrana externa es permeable para la mayoría de las moléculas pequeñas, pero la interna sólo permite el paso de ciertas moléculas como el ácido pirúvico y ATP y restringe el paso de otras. Esta permeabilidad selectiva de la membrana interna, tiene una importancia crítica porque capacita a las mitocondrias para destinar la energía de la respiración para la producción de ATP.

La mayoría de las enzimas del ciclo de Krebs se encuentran en la matriz mitocondrial. Las enzimas que actúan en el transporte de electrones se encuentran en las membranas de las crestas.

Las membranas internas de las crestas están formadas por un 80 % de proteínas y un 20 % de lípidos.

En las mitocondrias, el ácido pirúvico proveniente de la glucólisis, se oxida a dióxido de carbono y agua, completándose así la degradación de la glucosa.

El 95 % del ATP producido se genera, en la mitocondria.

Las mitocondrias son consideradas organoides semiautónomos, porque presentan los dos ácidos nucleicos (del tipo procarionte).


Las crestas mitocondriales aparecen cubiertas por partículas en forma de hongo, que tienen un tallo más fino que las unen a la membrana. Estas estructuras son las llamadas partículas F1 y representan una porción de la ATPasa especial que interviene en el acoplamiento entre la oxidación y la fosforilación. Las partículas F1 se encuentran en la membrana interna, del lado relacionado con la matriz; le confieren una asimetría característica relacionada con la función de la ATPasa (este punto se verá más detalladamente al referirnos a la hipótesis quimiosmótica).

Para concluir, es importante destacar que el ciclo de Krebs se lleva a cabo en la matriz mitocondrial; mientras que el transporte de electrones y la fosforilación oxidativa se producen a nivel de las crestas mitocondriales.

Ingreso al CICLO DE KREBS
El ácido pirúvico sale del citoplasma, donde se produce mediante glucólisis y atraviesa las membranas externa e interna de las mitocondrias. Antes de ingresar al Ciclo de Krebs, el ácido pirúvico, de 3 carbonos, se oxida. Los átomos de carbono y oxígeno del grupo carboxilo se eliminan como dióxido de carbono (descarboxilación oxidativa) y queda un grupo acetilo, de dos carbonos. En esta reacción exergónica, el hidrógeno del carboxilo reduce a una molécula de NAD+ a NADH.


Ahora la molécula original de glucosa se ha oxidado a dos moléculas de CO2, y dos grupos acetilos y, además se formaron 4 moléculas de NADH (2 en la glucólisis y 2 en la oxidación del ácido pirúvico).
Cada grupo acetilo es aceptado por un compuesto llamado coenzima A dando un compuesto llamado acetilcoenzima A (acetil CoA). Esta reacción es el eslabón entre la glucólisis y el ciclo de Krebs.

CICLO DE KREBS

El ciclo de Krebs también conocido como ciclo del ácido cítrico es la vía común final de oxidación del ácido pirúvico, ácidos grasos y las cadenas de carbono de los aminoácidos.
La primera reacción del ciclo ocurre cuando la coenzima A transfiere su grupo acetilo (de 2 carbonos) al compuesto de 4 carbonos (ácido oxalacético) para producir un compuesto de 6 carbonos (ácido cítrico).

El ácido cítrico inicia una serie de pasos durante los cuales la molécula original se reordena y continúa oxidándose, en consecuencia se reducen otras moléculas: de NAD+ a NADH y de FAD+ a FADH2. Además ocurren dos carboxilaciones y como resultado de esta serie de reacciones vuelve a obtenerse una molécula inicial de 4 carbonos el ácido oxalacético.
El proceso completo puede describirse como un ciclo de oxalacético a oxalacético, donde dos átomos de carbono se adicionan como acetilo y dos átomos de carbono (pero no los mismos) se pierden como CO2.

Dado que por cada molécula de glucosa inicial se habían obtenido dos de ácido pirúvico y, por lo tanto dos de acetil CoA, deben cumplirse dos vueltas del ciclo de Krebs por cada molécula de glucosa. En consecuencia los productos obtenidos de este proceso son el doble del esquema que se detalla a continuación.

Cuadro. BALANCE PARCIAL DE LA RESPIRACIÓN
PROCESO
SUSTRATO
PRODUCTOS
GLUCÓLISIS
Glucosa
2 ácido pirúvico
2 ATP
2 NADH
ENTRADA AL CICLO DE KREBS
2 ácido pirúvico
2 Acetil CoA
2 CO2
2 NADH
CICLO DE KREBS
2 Acetil CoA
4 CO2
2 GTP (equivalentes a 2 ATP)
6 NADH
2 FADH2
Glucosa
Descripción: http://www.genomasur.com/lecturas/flecha.gif 6 CO2
Descripción: http://www.genomasur.com/lecturas/flecha.gif 2 ATP
Descripción: http://www.genomasur.com/lecturas/flecha.gif 2 GTP
Descripción: http://www.genomasur.com/lecturas/flecha.gif 10 NADH
Descripción: http://www.genomasur.com/lecturas/flecha.gif 2 FADH2

Observando el balance parcial del ciclo de Krebs, se comprueba que en este proceso no se obtiene energía directamente bajo la forma de ATP (sólo se obtiene 1 GTP que es equivalente a 1 ATP). En cambio se obtienen cantidades de coenzimas reducidas (NADH y FADH2), y es a través de la oxidación posterior que se obtendrá la energía para sintetizar ATP.

Cada coenzima NADH equivale a 3 ATP y cada coenzima FADH2 equivale a 2 ATP.

TRANSPORTE DE ELECTRONES O CADENA RESPIRATORIA
En esta etapa se oxidan las coenzimas reducidas, el NADH se convierte en NAD+ y el FADH2 en FAD+. Al producirse esta reacción, los átomos de hidrógeno (o electrones equivalentes), son conducidos a través de la cadena respiratoria por un grupo de transportadores de electrones, llamados citocromos. Los citocromos experimentan sucesivas oxidaciones y reducciones (reacciones en las cuales los electrones son transferidos de un dador de electrones a un aceptor).

En consecuencia, en esta etapa final de la respiración, estos electrones de alto nivel energético descienden paso a paso hasta el bajo nivel energético del oxígeno (último aceptor de la cadena), formándose de esta manera agua.

Cabe aclarar que los tres primeros aceptores reciben el H+ y el electrón conjuntamente. En cambio, a partir del cuarto aceptor, sólo se transportan electrones, y los H+ quedan en solución.

FOSFORILACIÓN OXIDATIVA
El flujo de electrones está íntimamente acoplado al proceso de fosforilación, y no ocurre a menos que también pueda verificarse este último. Esto, en un sentido, impide el desperdicio ya que los electrones no fluyen a menos que exista la posibilidad de formación de fosfatos ricos en energía. Si el flujo de electrones no estuviera acoplado a la fosforilación, no habría formación de ATP y la energía de los electrones se degradaría en forma de calor.

Puesto que la fosforilación del ADP para formar ATP se encuentra acoplada a la oxidación de los componentes de la cadena de transporte de electrones, este proceso recibe el nombre de fosforilación oxidativa.

En tres transiciones de la cadena de transporte de electrones se producen caídas importantes en la cantidad de energía potencial que retienen los electrones, de modo que se libera una cantidad relativamente grande de energía libre en cada uno de estos tres pasos, formándose ATP.
 
HIPÓTESIS QUIMIOSMÓTICA
Durante mucho tiempo se intentó explicar la naturaleza del enlace entre la cadena respiratoria y el sistema de fosforilación. En 1961, Mitchell propuso la hipótesis quimiosmótica, que es la que actualmente se acepta en general.

Esta hipótesis ha sido apoyada por las evidencias experimentales encontradas en distintos laboratorios, lo que le valió a Mitchell el premio Nobel en 1978.

La misma propone que el transporte de electrones y la síntesis de ATP están acopladas por un gradiente protónico a través de la membrana mitocondrial.

Según este modelo, el transporte de electrones paso a paso, desde el NADH o el FADH2 hasta el oxígeno a través de los transportadores de electrones, da por resultado el bombeo de protones a través de la membrana mitocondrial interna hacia el espacio entre las membranas mitocondriales interna y externa.

Este proceso genera un potencial de membrana a través de la membrana mitocondrial interna, ya que el medio que ocupa el espacio intermembranoso se carga positivamente.

La diferencia en concentración de protones entre la matriz y el espacio intermembranoso representa energía potencial, resultado en parte de la diferencia de pH y en parte de la diferencia en la carga eléctrica de los lados de la membrana. Cuando los protones pueden fluir de regreso a la matriz, descendiendo por el gradiente protónico, se libera energía utilizable en la síntesis de ATP a partir de ADP y Pi.

Los protones regresan a la matriz a través de conductos especiales situados en la membrana interna. Estos conductos están dados por un gran complejo enzimático, llamado ATP SINTETASA. Este complejo consta de dos proteínas: F0 y F1.

Las partículas F0 están incluidas en la membrana mitocondrial interna y la atraviesan desde afuera hacia adentro. Se presume que poseen un conducto o poro interior que permite el paso de los protones. Las partículas F1 (que ya habíamos mencionado, al describir la estructura mitocondrial) son proteínas globulares grandes consistentes en nueve subunidades polipeptídicas unidas a las partículas F0 en el lado de la membrana que linda con la matriz. Se comprobó que propulsa la síntesis de ATP a partir de ADP y Pi. Conforme los protones descienden a lo largo del gradiente de energía, dicha energía utiliza para sintetizar ATP. De esta manera, el gradiente protónico que existe a través de la membrana mitocondrial interna acopla la fosforilación con la oxidación.


Esquema comparativo de la quimiósmosis en la mitocondria y el cloroplasto. Observe el bombeo de protones desde la matriz mitocondrial al espacio intermembrana (sombreado). El ATP se forma del lado de la membrana que mira a la matriz, por la difusión de los H+ a través del complejo ATPsintetasa. En el cloroplasto, a través de la membrana tilacoidal se bombean protones desde el estroma al compartimiento tilacoidal (sombreado). Como los H+ atraviesan la membrana a través de la ATPsintetasa, la fosforilación del ADP tiene lugar del lado de la membrana que mira al estroma.

Cuadro. RESUMEN DE LA GLUCÓLISIS Y DE LA RESPIRACIÓN
En el citoplasma:
Glucólisis Descripción: http://www.genomasur.com/lecturas/flecha.gif
2 ATP
2 ATP
En las mitocondrias:
De la glucólisis:
De la respiración
Ácido pirúvico Descripción: http://www.genomasur.com/lecturas/flecha.gif acetil CoA:
Ciclo de Krebs:
2 NADH Descripción: http://www.genomasur.com/lecturas/flecha.gif 6 ATP
1 NADH Descripción: http://www.genomasur.com/lecturas/flecha.gif3 ATP (x 2)
1 ATP
3 NADH Descripción: http://www.genomasur.com/lecturas/flecha.gif 9 ATP (x 2)
1 FADH2 Descripción: http://www.genomasur.com/lecturas/flecha.gif 2 ATP
Descripción: http://www.genomasur.com/lecturas/flecha.gif 6 ATP*
Descripción: http://www.genomasur.com/lecturas/flecha.gif6 ATP
Descripción: http://www.genomasur.com/lecturas/flecha.gif24 ATP

Rendimiento total de ATP Descripción: http://www.genomasur.com/lecturas/flecha.gif 36 a 38 ATP

* en algunas células el costo energético de transportar los electrones desde el NADH formado en la glucólisis a través de la membrana mitocondrial interna deprime el rendimiento neto de estos 2 NADH a sólo 4 ATP