domingo, 24 de julio de 2016

DESARROLLO Y CRECIENTOS



Las auxinas son un grupo de fitohormonas que actúan como reguladoras del crecimiento vegetal. Esencialmente provocan la elongación de las células. Se sintetizan en las regiones meristemáticas del ápice de los tallos y se desplazan desde allí hacia otras zonas de la planta, principalmente hacia la base, estableciéndose así un gradiente de concentración. 
Este movimiento se realiza a través del parénquima que rodea a los haces vasculares. Las auxinas y su rol en el crecimiento vegetal fueron primero descritas por el científico neerlandés Frits Warmolt Went.
La síntesis de auxinas se ha identificado en diversos organismos como plantas superiores, hongos, bacterias y algas, y casi siempre está relacionada con etapas de intenso crecimiento.
La presencia e importancia de las hormonas vegetales se estableció por los estudios de las auxinas. Sobre ellas hay una amplia y profunda información científica que supera ampliamente el conocimiento que se tiene de otras hormonas, lo que ha permitido comprender con más precisión cómo actúan las hormonas en las plantas. Junto con las giberelinas y las citocininas, las auxinas regulan múltiples procesos fisiológicos en las plantas, aunque no son los únicos compuestos con esa capacidad.
Su representante más abundante en la naturaleza es el ácido indolacético (IAA), derivado del aminoácido triptófano.
Las auxinas también son usadas por los agricultores para acelerar el crecimiento de las plantas, para promover la iniciación de raíces adventicias —por lo que una auxina suele ser el componente activo de muchos preparados comerciales utilizados en la fruticultura para el enraizamiento de esquejes de tallos—, para promover la floración y el cuaje de frutos, y para evitar la caída prematura de los frutos.


Funcionan como reguladores del crecimiento, en particular produciendo el crecimiento en tamaño de las células (elongación), aunque en algunos tejidos pueden estimular también la división celular.
Se sintetizan en los meristemos apicales de los tallos y son transportadas hacia la parte inferior de la planta a través del parénquima que rodea a los ejes vasculares, de modo que se establece un gradiente vertical de concentración a lo largo del eje de la planta, si bien en su actuación es fundamental el transporte lateral, es decir, la salida de la hormona del parénquima y su distribución hacia los tejidos que la circundan. Este proceso es, precisamente, el que está afectado por factores ambientales que condicionan la acción de las auxinas.

           La luz y la gravedad son los factores ambientales más importantes en la actividad auxínica: ambos estimulan la difusión de las auxinas, haciendo que actúen sobre los diferentes órganos de la planta, aunque su actividad también está influida por la temperatura y la presencia de agua: las bajas temperaturas y la falta de agua parecen disminuir la concentración de auxina. En conjunto, se aprecia que los factores que facilitan el crecimiento favorecen el funcionamiento de las auxinas, mientras que los que lo perjudican reducen su concentración.

La cantidad de auxinas presentes en la planta también está influida por el resto de las hormonas vegetales: las citoquininas y las giberelinas producen un aumento de la cantidad de auxinas, mientras que el et
Los efectos concretos que producen las auxinas en las plantas son los siguientes:
1.     Dominancia del brote apical e inhibición de la ramificación lateral, con lo que la planta crece fundamentalmente en altura.
2.     Estimulación del crecimiento apical de toda la planta.
3.     Diferenciación de los tejidos conductores (xilema y floema).
4.     Inhibición de la caida de hojas y frutos (abscisión).
5.     Activación de la formación de raíces adventicias.
6.     Favorecen la floración.
7.     Tropismos, es decir, crecimiento de la planta en una dirección determinada en respuesta a un estímulo. Los tropismos permiten a las plantas orientar algunos de sus órganos en una dirección apropiada, permitiéndoles acercarse hacia un estímulo positivo o alejarse de un estímulo aversivo.

Existen diferentes tipos de tropismos, según el estímulo que los provoca, aunque los más conocidos e importantes para la planta son el fototropismo (provocado por la luz) y el gravitropismo (o geotropismo, provocado por la gravedad)

Estructura química
La molécula de compuestos con propiedades auxínicas, se caracteriza por la presencia de un anillo cíclico (la molécula alifática, está inactiva). Tiene por lo menos un doble enlace en el anillo cíclico. Grupo funcional carboxílico  u otro funcionalmente análogo. La cadena lateral influye sobre la actividad de la molécula; la más activa es la cadena acética 
Algunas auxinas naturales:

Fue la primera molécula aislada del grupo de las auxinas
ácido 4-cloiroindol-3-acético (4-Cl-IAA) (cloroauxina) descubierta en los 70 en leguminosas

Biosintesis y metabolismos de las auxinas

Señalan algunas rutas metabólicas que conducen a la biosíntesis de auxina (IAA).
1.   Vía triptófano-dependiente en plantas y bacterias
2.   Vía triptófano-independiente en plantas
-       Síntesis de las auxinas (IAA), vía triptófano dependiente
1.   Triptófano -> Ácido indol-3-piruvico -> Indol-3-acetaldehído -> IAA
2.   Triptófano -> Triptamina -> Indol-3-acetaldehído -> IAA
3.   Triptófano -> Indol-3-acetaldoxima -> Indol-3 -acetonitrilo -> IAA
4.   Triptófano -> Indol-3-acetamida -> IAA


-       Síntesis de las auxinas (IAA), vía triptófano independiente
1.   Indol-3-glicerol fosfato -> Serina+indol -> Indol-3-acetonitrilo -> IAA
2.   Indol-3-glicerol fosfato -> Serina+indol -> ácido indol-3-pirúvico -> IAA




Catabolismo
-       Vía catabólica de las auxinas (IAA)
1.   IAA -> Ácido osindol-3-acético (vía secundaria)
2.   IAA -> Indol-3-acetilaspartato -> Diosindol-3-acetilaspartato -> Ácido osindol-3-acético
3.   IAA -> 3-metileno osindol (por acción de peroxidasas)

Tipos de auxinas

Son varias las auxinas que existen en el tejido vegetal, siendo el ácido indolacético (AIA) la más relevante en cuanto a cantidad y actividad. Otros como el ácido indolacetonitrilo, o la indolacetamida están presentes en menor cantidad y tienen poca actividad en relación al AIA. Las auxinas pueden estar libres o bien “unidas” a azúcares, ésteres, amidas; las moléculas unidas a otro compuesto no son activas pero pueden serlo si se “liberan”.
La mayor parte de las auxinas provienen del aminoácido triptófano; el zinc (Zn) es un elemento crítico para que ocurra lo anterior, de tal forma que una sintomatología visual de falta de zinc (Zn) en realidad es una falta de auxina para estimular crecimiento.

Biosíntesis

Las auxinas son utilizadas en fruticultura para la actividad de crecimiento (por división o alargamiento celular) y en particular en hojas jóvenes y en semillas en desarrollo. En condiciones de estrés hay una baja en la síntesis de auxina y un aumento en la presencia de auxinas “unidas”.
La aplicación de auxinas a una planta induce la síntesis de auxinas naturales en el tejido aplicado, aun cuando también puede inducir la síntesis de otras hormonas. Una aplicación de auxina a alta dosis puede estimular la síntesis de etileno y causar efectos negativos de crecimiento hasta la muerte de TEJIDOS.



Las auxinas producidas en los tejidos vegetativos pueden ejercer su efecto en ese sitio, pero también se pueden translocar a otros sitios mediante un flujo hacia “abajo” y allá también ejercer su efecto. El transporte de las auxinas producidas en las raíces parece tener un flujo opuesto al de la parte vegetativa, mostrando ser hacia “arriba”. En ambos casos se reconoce que el problema es el tejido vascular por donde ocurre la translocación.
Las auxinas aplicadas a los cultivos no tienen mucha movilidad (excepto el 2,4-D), lo cual se debe a que inmediatamente después de entrar al tejido se “unen” a proteínas y pierden capacidad de movimiento.
Giberelinas
La giberelina es una fitohormona producida en la zona apical, frutos y semillas. Sus principales funciones son la interrupción del período de latencia de las semillas, haciéndolas germinar, la inducción del desarrollo de yemas y frutos y la regulación del crecimiento longitudinal del tallo como así también la elongación de órganos axiales: pecíolos, pedúnculos, etc. Su acción se considera opuesta a la de otra hormona vegetal, el ácido abscísico.

Las giberelinas son también hormonas que estimulan el desarrollo de la planta, aunque de un modo diferente a como lo hacen las auxinas: su principal efecto es estimular el desarrollo del tallo, pero por debajo del meristemo apical, y también estimulan la germinación de las semillas y la movilización de nutrientes en ellas.

Tienen, además, algunos efectos menores como inducir la floración en condiciones no demasiado apropiadas, inducir la formación de frutos sin fecundación o detener el envejecimiento de frutos y hojas en algunas plantas.

El crecimiento del tallo que provocan tiene lugar por elongación de las células, y no por división celular, mediante un mecanismo diferente al de las auxinas, aunque sus efectos pueden sumarse.

Las giberelinas se sintetizan, en general, en las partes en desarrollo, y en particular son especialmente abundantes en las estructuras reproductivas, razón por la cual su origen se encuentra en ápices de tallos y raíces, hojas jóvenes, flores y semillas inmaduras y embriones en germinación.

La luz es el factor ambiental que más influye sobre las giberelinas. Por una parte, la luz roja aumenta la concentración de giberelinas, lo que parece indicar que en este mecanismo tiene influencia el fitocromo, otro de los elementos importantes en la regulación de la fisiología vegetal.

Por otra parte, el fotoperiodo también influye en la producción de la síntesis de estas hormonas: los días largos incrementan dicha síntesis. La producción de giberelinas también es incrementada por el frío. La actividad de las giberelinas también es influida por otras hormonas vegetales: las citoquininas la incrementan mientras que el ácido abscísico la reduce.


·         Formas libres: Todas derivan del ent-Kaureno y tienen como estructura básica el ent-giberelano. Todas son diterpenoides ácidos derivados del hidrocarburo heterocíclico ent-Kaureno. Existen dos tipos de formas libres: las que tienen 20 C (inactivas) y las de 19 C (originadas por la pérdida de 1 C en determinada posición). Para que sean activas, deben cumplir dos condiciones, tiene que ser de 19 C y tiene que tener una hidroxilación en la posición 3. Se pensaba que las giberelinas de 20 C tenían actividad, pero no por sí mismas, tienen que degradarse e hidroxilarse en el C3.son las hojas, raíces y semillas maduras
·        
 Formas conjugadas: Típicamente se forman conjugados con glúcidos, de modo que no tienen actividad.


Regulación de los niveles de GAs en la planta

Biosíntesis: Inicialmente se debe sintetizar su precursor inmediato. Para la formación del GGPP (geranil geranil pifosfato) tienen que actuar 2 rutas:
a) Síntesis del ispentenil profosfato (IPP): Inicialmente se pensaba en la ruta del acetato/mevalonato, que tiene lugar en el citosol, luego el IPP se transportaba del citosol a los proplastidios.
b) Ruta de los terpenoides, una vez formado el IPP, tiene lugar la síntesis del GGPP en los proplastidios. El IPP se isomeriza a dimetilalyldiP. Ambos se unen para formar un monoterpeno (geranio PPi) y se van uniendo más moléculas de IPP.
Las gibererlinas, diterpenoides tetracíclicos, surgen a partir del GGDP, que es un diterpenoide lineal, en 3 etapas:
1.- Ciclación: Dividido en dos partes: el GGDP se transforma en CPP y el CDP se convierte en ent-kaweno (tetracíclico). Catalizado pror ciclcasas en los proplastidios.
2.- Oxidaciones: Para dar lugar al aldehído de GA12 (Ald GA12): dos partes: El ent-kaweno se transforma en ácido ent-kawenoico, el grupo metilo del ent-kaweno se transforma en grupos carboxilo del ácido ent-kawenoico y la transformación del anillo B con 6 C en anillo B con 5 C. El ácido ent-kawenoico se transforma en aldehído de GA12. Catalizado por monooxigenasas dependientes de P450 en el RE (transporte desde los proplastidios al RE).
3.- Formación del resto de GAs a partir del Ald GA12: Transformación del ALd GA12 en GA12 (puede tener lugar en dos partes: en el RE (catalizado por una monooxigenasasa) o en el citosol (catalizado por una diosigenasa). El resto de reacciones de esta etapa ocurren en el citosol, catalizadas por dioxigenasas: la primera modificación de la estructura básica es la oxidación y posterior eliminación del C en posición 20. La GA12 tiene un grupo metilo en el C20, que se elimina por sucesivas oxidaciones, generándose distintas Gas en cada etapa oxidativa: Ruta no hidroxilativa. Éstas, pueden tener lugar en rutas alternativas, como la hidroxilación del C13, o la hidroxilación del C3 (importante para que la giberelina sea activa).
            La biosíntesis de giberelinas está regulada por distintos factores:
a) Exógenos: Fotoperíodo: Aumentan giberelinas y se produce la floración (en plantas de día largo, que requieren una determinada duración de la noche para crecer). Temperatura: En determinadas especies, es necesario pasar una época fría para que se produzca la germinación o floración, esas bajas temperaturas inducen al biosíntesis de GAs.
b) Endógenos: Sistema de retroalimentación de las giberelinas: cuando la concentración de GAs es baja, se induce su síntesis, y cuando es alta la inhibe.
c) Catabolismo: La hidroxilación del C2 es el proceso catabólico más importante (las GAs que presentan el OH en el C2 son inactivas). Conjugación: Suele producirse con glúcidos, generándose una forma inactiva, pero que sirve como reserva movilizable en caso de necesidad. Transporte: No polar (fundamentalmente en el floema. Es frecuente el transporte de formas conjugadas inactivas o de intermediarios de la síntesis).

Efectos fisiológicos

Estimula el crecimiento del tallo de las plantas mediante la estimulación de la división y elongación celular, regulan la transición de la fase juvenil a la fase adulta, influyen en la iniciación floral, y en la formación de flores unisexuales en algunas especies; promueven el establecimiento y crecimiento del fruto, en casos de que las auxinas no aumentan el crecimiento, promueven la germinación de las semillas (ruptura de la dormición) y la producción de enzimas hidrolíticas durante la germinación.

Modo de acción

Las giberelinas son activas y producen respuesta a concentraciones extremadamente bajas. Tiene que haber un mecanismo eficaz para la percepción y transducción de la señal para que se produzca la respuesta. Las giberelinas incrementan tanto la división como la elongación celular . Inducen el crecimiento a través de una alteración de la distribución de calcio en los tejidos. Las giberelinas activan genes que sintetizan ARNm, el cual favorece la síntesis de enzimas hidrolíticos, como la α-amilasa, que desdobla el almidón en azúcares, dando así alimento al organismo vegetal, y por tanto, haciendo que incremente su longitud.

Elongación del tallo

Hay diferencias con respecto al proceso inducido por las auxinas: expansión por el potencial osmótico. El tiempo que se tarda en obtener respuesta es diferente: auxinas (al cabo de 10-15 min de su aplicación), GAs (2 ó 3 tras su aplicación). Los efectos de auxinas y giberelinas en este proceso son aditivos. Las GAs regulan el ciclo celular en los meristemos intercalares, se produce la elongación celular y luego la división celular, estando este efecto mediado por una proteína kinasa dependiente de ciclina. En el crecimiento del tallo hay genes que codifican para proteínas transductoras de señal.

Movilización de sustancias de reserva en el endospermo de las semillas

Producción de enzimas hidrolíticas durante la germinación. La alfa-amilasa es sintetizada en la capa de aleurona y su síntesis es inducida por las GAs. No se han aislado receptores, pero se cree que el receptor de GAs está en la superficie exterior de la membrana plasmática de las células de esta capa de aleurona. Tras la percepción , hay un primer paso en la transducción que implica a una proteían G heterotrimérica, que se une a GTP y puede activar a un mensajero 2º. Posteriormente se distinguen dos rutas:
a) Ruta dependiente de Ca++, al final, tiene como consecuencia la secreción de alfa-amilasa. Tras añadir GAs al medio, en el citosol aumenta la cantidad de Ca++, se induce la secreción de la alfa-amilasa por vesículas del aparato de Golgi. En este proceso dependiente de Ca++, es posible que participen proteínas kinasas.
b) Ruta independiente de Ca++: se induce la expresión génica de la alfa-amilasa. Tras la activación de la proteína G, mensajeros secundarios como el GHPc, y luego un mensajero secundario que inactiva el represor GAI. Algunos de estos genes son, a su vez, codificadores de factores transcripcionales que, posteriormente, permiten la expresión de los genes de respuesta secundaria a GAs, entre los cuales está la alfa-amilasa.
Entre los genes que producen la respuesta primaria está GAMYB , que es un conocido factor transcripcional. Los promotores de los genes de respuesta secundaria tienen: secuencias de unión a la proteína GAMYB (factor transcripcional) y secuencias características llamadas GARE (elementos de respuesta a las GAs) como la TAACAAA, TATCCAC y C/TCTTTTC/T, que se combinan en los promotores para dar complejos de respuesta a GAs.

Citoquininas
Las citoquininas o citocininas forma parte un grupo de hormonas vegetales (fitohormonas) que promueven la división y la diferenciación celular. Su nombre proviene del término «citokinesis» que se refiere al proceso de división celular. Son hormonas fundamentales en el proceso de organogénesis en las plantas y en la regulación de diversos procesos fisiológicos como fotosíntesis, regulación del crecimiento (dominancia apical), senescencia, apoptosis vegetal, inmunidad vegetal (resistencia a patógenos) y toleranciay defensa ante herbívoros.
Las citocininas fueron descubiertas en la década de 1950 como factores que promueven la proliferación celular y mantienen el crecimiento de tejidos vegetales cultivados in vitro (Miller et al., 1955). Poco después de su descubrimiento Skoog y Miller propusieron que la formación de órganos en las plantas se debe al balance existente entre las citocininas y las auxinas. Usando cultivos de tabaco demostraron que un balance alto de auxinas favorecía la formación de raíces mientras que un balance alto de citocininas favorecía la formación de tallos. Aparte de su papel como reguladores de la formación de nuevos órganos, las citocininas también intervienen en la apertura de [estomas), supresión de la dominancia apical e inhibición de la senescencia de las hojas entre otros procesos.

Las citoquininas o citocininas se encargan de regular los procesos de división celular. Dentro de la planta se sintetizan en el meristemo apical de las raíces, aunque también se encuentran en abundancia en frutos y semillas inmaduras.
Sus principales efectos fisiológicos son:
1.    Estimulan la mitosis celular, en particular cuando actúan en conjunción con las auxinas.
2.    Promueven la formación y crecimiento de brotes laterales.
3.    Estimulan la germinación de las semillas y el desarrollo de brotes.
4.    Activan la movilización de nutrientes hacia las hojas, y en ellas la maduración de los cloroplastos.
5.    Estimulan el crecimiento celular en hojas y cotiledones.
6.    Retrasan la senescencia, directamente y también de un modo indirecto, al estimular la síntesis de óxido nítrico.
Las citoquininas son producidas como respuesta a la luz roja (por lo que parece estar implicado el fitocromo), y son también estimuladas por el aumento de la concentración de oxígeno en el medio o por la presencia en el suelo de nitratos y sulfatos.

Las bajas temperaturas también son un importante activador de las citoquininas, lo cual tiene un significado biológico interesante: la activación de las citoquininas en las semillas, y por tanto el inicio de la germinación, se produce después de que haya transcurrido un periodo frío: el invierno. Por el contrario, las condiciones de estrés inhiben la acción de las citoquininas, lo que también es coherente desde el punto de vista de las necesidades de adaptación de la planta, ya que impide que las semillas germinen cuando las condiciones no son las adecuadas. En cuanto a los factores endógenos, tanto el etileno como las giberelinas activan la actividad de las citoquininas.


Las citoquininas naturales pueden definirse estructuralmente como moléculas derivadas de la adenina con una cadena lateral unida al grupo amino 6 del anillo purínico. La cadena lateral puede ser de naturaleza isoprenoide o aromática.  Dentro de las citoquininas isoprenoides se encuentran la (cis- y trans-) zeatina, la isopenteniladenina y la dihidrozeatina, con respectivos derivados glicosilados (Sakakibara et al., 2006). Entre las aromáticas se incluyen la benciladenina, la kinetina y la topolina. También se consideran citoquininas otros compuestos de origen no vegetal y derivados sintéticos de la difenilurea como el CPPU y el tidiazuron (TDZ), que actúan como análogos estructurales de la molécula natural.

Lugar de biosíntesis

Históricamente se asumía que las citoquininas solo eran sintetizadas en las raíces de las plantas, debido a que se encuentran en mayor cantidad. Sin embargo hoy en día se sabe que son sintetizadas en cualquier tejido vegetal: tallos, raíces, hojas, flores, frutos o semillas, y que juegan diversas funciones muy importantes. Regularmente, se asume que la mayor producción de citocininas es en sitios y momentos en los que existe un proceso de diferenciación y desarrollo (e.i. meristemos).
No obstante, las citoquininas pueden presentar movilización sistémica a otros tejidos. Regulando procesos en sitios diferentes a su producción o administración. Esto hace complejo su uso en procesos de mejoramiento agrícola.

Translocación

El movimiento de las citocininas en la planta, puede ser tanto hacia al ápice como a la base. Este depende de la naturaleza química de la hormona. Por ejemplo en tomate (trans-) Zeatina es es la tipo de citoquinina principalmente transportada por el xilema (hacia el ápice de la planta), mientras que isopenteniladenina se encuentra en mayor cantidad en el floema. De este modo pueden translocarse a diferentes partes de a planta ejerciendo varias funciones regulatorias. Esto parece no ser válido en el caso de citocininas de la familia de las fenilureas (sintéticas) en las que se ha demostrado su inmovilidad dentro del tejido vegetal.

No hay comentarios:

Publicar un comentario