miércoles, 20 de julio de 2016

Etapas de la fotosíntesis



Las reacciones de la fotosíntesis tienen lugar en dos etapas. En la primera etapa (las reacciones dependientes de la luz) o fase luminosa, la luz impacta en las moléculas de clorofila a que están empaquetadas en una ordenación especial, en las membranas tilacoidales. Los electrones de la clorofila a son lanzados a niveles energéticos superiores, y las moléculas de clorofila a se oxidan.
En una secuencia de reacciones, la energía que llevan estos electrones se usa para formar ATP a partir del ADP y para reducir una molécula llamada NADP+ Las moléculas de agua se escinden en esta etapa para dar electrones que se usan para sustituir los que se marchan de la clorofila a.



En la segunda etapa de la fotosíntesis (las reacciones independientes de la luz) o fase oscura, el ATP y el NADPH, formados durante la primera etapa, se usan para reducir el dióxido de carbono a un glúcido sencillo. Así pues, la energía química, temporalmente almacenada en las moléculas de ATP y NADPH, se transfiere a moléculas diseñadas para el transporte y el almacenaje en las células del alga o en el cuerpo de la planta. Al nivel tiempo, se forma una cadena carbonada con la cual pueden fabricarse otros compuestos necesarios.
Esta incorporación de dióxido de carbono en forma de materia orgánica, se denomina fijación del carbono, y se produce en el estroma del cloroplasto.  
Fotofosforilación acíclica (oxigénica)   
El proceso de la fase luminosa, supuesto para dos electrones, es el siguiente: Los fotones inciden sobre el fotosistema II, excitando y liberando dos electrones, que pasan al primer aceptor de electrones, la feofitina. Los electrones los repone el primer dador de electrones, el dador Z, con los electrones procedentes de la fotólisis del agua en el interior del tilacoide (la molécula de agua se divide en 2H+ + 2e- + 1/2O2). Los protones de la fotólisis se acumulan en el interior del tilacoide, y el oxígeno es liberado.
Los electrones pasan a una cadena de transporte de electrones, que invertirá su energía liberada en la síntesis de ATP. ¿Cómo? La teoría quimioosmótica nos lo explica de la siguiente manera: los electrones son cedidos a las plastoquinonas, las cuales captan también dos protones del estroma.
Los electrones y los protones pasan al complejo de citocromos bf, que bombea los protones al interior del tilacoide. Se consigue así una gran concentración de protones en el tilacoide (entre éstos y los resultantes de la fotólisis del agua), que se compensa regresando al estroma a través de las proteínas ATP-sintasas, que invierten la energía del paso de los protones en sintetizar ATP. La síntesis de ATP en la fase fotoquímica se denomina fotofosforilación.
Los electrones de los citocromos pasan a la plastocianina, que los cede a su vez al fotosistema I. Con la energía de la luz, los electrones son de nuevo liberados y captados por el aceptor A0. De ahí pasan a través de una serie de filoquinonas hasta llegar a la ferredoxina. Ésta molécula los cede a la enzima NADP+-reductasa, que capta también dos protones del estroma. Con los dos protones y los dos electrones, reduce un NADP+ en NADPH + H+.
El balance final es: por cada molécula de agua (y por cada cuatro fotones) se forman media molécula de oxígeno, 1,3 moléculas de ATP, y un NADPH + H+.


Fase luminosa cíclica (Fotofosforilación anoxigénica)
En la fase luminosa o fotoquímica cíclica interviene de forma exclusiva el fotosistema I, generándose un flujo o ciclo de electrones que en cada vuelta da lugar a síntesis de ATP. Al no intervenir el fotosistema II, no hay fotólisis del agua y, por ende, no se produce la reducción del NADP+ ni se desprende oxígeno (anoxigénica). Únicamente se obtiene ATP.
El objetivo que tiene la fase cíclica tratada es el de subsanar el déficit de ATP obtenido en la fase acíclica para poder afrontar la fase oscura posterior.
Cuando se ilumina con luz de longitud de onda superior a 680 nm (lo que se llama rojo lejano) sólo se produce el proceso cíclico. Al incidir los fotones sobre el fotosistema I, la clorofila P700 libera los electrones que llegan a la ferredoxina, la cual los cede a un citocromo bf y éste a la plastoquinona (PQ), que capta dos protones y pasa a (PQH2).
La plastoquinona reducida cede los dos electrones al citocromo bf, seguidamente a la plastocianina y de vuelta al fotosistema I. Este flujo de electrones produce una diferencia de potencial en el tilacoide que hace que entren protones al interior. Posteriormente saldrán al estroma por la ATP-sintetasa fosforilando ADP en ATP. De forma que únicamente se producirá ATP en esta fase.
Sirve para compensar el hecho de que en la fotofosforilación acíclica no se genera suficiente ATP para la fase oscura.
La fase luminosa cíclica puede producirse al mismo tiempo que la acíclica.





En la fase oscura, que tiene lugar en la matriz o estroma de los cloroplastos, tanto la energía en forma de ATP como el NADPH que se obtuvo en la fase fotoquímica se usa para sintetizar materia orgánica por medio de sustancias inorgánicas. La fuente de carbono empleada es el dióxido de carbono, mientras que como fuente de nitrógeno se utilizan los nitratos y nitritos, y como fuente de azufre, los sulfatos. Esta fase se llama oscura, no porque ocurra de noche, sino porque no requiere de energía solar para poder concretarse.
·                     Síntesis de compuestos de carbono: descubierta por el bioquímico norteamericano Melvin Calvin, por lo que también se conoce con la denominación de Ciclo de Calvin, se produce mediante un proceso de carácter cíclico en el que se pueden distinguir varios pasos o fases.
En primer lugar se produce la fijación del dióxido de carbono. En el estroma del cloroplasto, el dióxido de carbono atmosférico se une a la pentosa ribulosa-1,5-bifosfato, gracias a la enzima RuBisCO, y origina un compuesto inestable de seis carbonos, que se descompone en dos moléculas de ácido 3-fosfoglicérico. Se trata de moléculas constituidas por tres átomos de carbono, por lo que las plantas que siguen esta vía metabólica se llaman C3.
Si bien, muchas especies vegetales tropicales que crecen en zonas desérticas, modifican el ciclo de tal manera que el primer producto fotosintético no es una molécula de tres átomos de carbono, sino de cuatro (un ácido dicarboxílico), constituyéndose un método alternativo denominado vía de la C4, al igual que este tipo de plantas.
Con posterioridad se produce la reducción del dióxido de carbono fijado. Por medio del consumo de ATP y del NADPH obtenidos en la fase luminosa, el ácido 3-fosfoglicérico se reduce a gliceraldehído 3-fosfato. Éste puede seguir dos vías, consistiendo la primera de ellas en regenerar la ribulosa 1-5-difosfato (la mayor parte del producto se invierte en esto) o bien, servir para realizar otro tipo de biosíntesis: el que se queda en el estroma del cloroplasto comienza la síntesis de aminoácidos, ácidos grasos y almidón.
El que pasa al citosol origina la glucosa y la fructosa, que al combinarse generan la sacarosa (azúcar característico de la savia) mediante un proceso parecido a la glucólisis en sentido inverso.
La regeneración de la ribulosa-1,5-difosfato se lleva a cabo a partir del gliceraldehído 3-fosfato, por medio de un proceso complejo donde se suceden compuestos de cuatro, cinco y siete carbonos, semejante a ciclo de las pentosas fosfato en sentido inverso (en el ciclo de Calvin, por cada molécula de dióxido de carbono que se incorpora se requieren dos de NADPH y tres de ATP).
·           Síntesis de compuestos orgánicos nitrogenados: gracias al ATP y al NADPH obtenidos en la fase luminosa, se puede llevar a cabo la reducción de los iones nitrato que están disueltos en el suelo en tres etapas.
En un primer momento, los iones nitrato se reducen a iones nitrito por la enzima nitrato reductasa, requiriéndose el consumo de un NADPH. Más tarde, los nitritos se reducen a amoníaco gracias, nuevamente, a la enzima nitrato reductasa y volviéndose a gastar un NADPH.
Finalmente, el amoníaco que se ha obtenido y que es nocivo para la planta, es captado con rapidez por el ácido α-cetoglutárico originándose el ácido glutámico (reacción catalizada por la enzima glutamato sintetasa), a partir del cual los átomos de nitrógeno pueden pasar en forma de grupo amino a otros cetoácidos y producir nuevos aminoácidos.
Sin embargo, algunas bacterias pertenecientes a los géneros AzotobacterClostridium y Rhizobium y determinadas cianobacterias (Anabaena y Nostoc) tienen la capacidad de aprovechar el nitrógeno atmosférico, transformando las moléculas de este elemento químico en amoníaco mediante el proceso llamada fijación del nitrógeno. Es por ello por lo que estos organismos reciben el nombre de fijadores de nitrógeno.


·           Síntesis de compuestos orgánicos con azufre: partiendo del NADPH y del ATP de la fase luminosa, el ion sulfato es reducido a ion sulfito, para finalmente volver a reducirse a sulfuro de hidrógeno. Este compuesto químico, cuando se combina con la acetilserina produce el aminoácido cisteína, pasando a formar parte de la materia orgánica celular.

La fase lumínica de la fotosíntesis es una etapa en la que se producen reacciones químicas con la ayuda de la luz solar y la clorofila.
La clorofila es un compuesto orgánico, formado por moléculas que contienen átomos de carbono, de hidrógeno, oxígeno, nitrógeno y magnesio.
Estos elementos se organizan en una estructura especial: el átomo de magnesio se sitúa en el centro rodeado de todos los demás átomos.

FOTORESPIRACION
Este proceso, que implica el cierre de los estomas de las hojas como medida preventiva ante la posible pérdida de agua, se sobreviene cuando el ambiente es cálido y seco. Es entonces cuando el oxígeno generado en el proceso fotosintético comienza a alcanzar altas concentraciones.
Cuando existe abundante dióxido de carbono, la enzima RuBisCO (mediante su actividad como carboxilasa) introduce el compuesto químico en el ciclo de Calvin con gran eficacia. Pero cuando la concentración de dióxido de carbono en la hoja es considerablemente inferior en comparación a la de oxígeno, la misma enzima es la encargada de catalizar la reacción de la RuBisCO con el oxígeno (mediante su actividad como oxigenasa), en lugar del dióxido de carbono.
Esta reacción es considerada la primera fase del proceso fotorrespiratorio, en el que los glúcidos se oxidan a dióxido de carbono y agua en presencia de luz. Además, este proceso supone una pérdida energética notable al no generarse ni NADH ni ATP (principal rasgo que lo diferencia de la respiración mitocondrial).
Cuando una molécula de RuBisCO reacciona con una de oxígeno, se origina una molécula de ácido fosfoglicerico y otra de ácido fosfoglicólico, que prontamente se hidroliza a ácido glicólico.
Este último sale de los cloroplastos para posteriormente introducirse en los peroxisomas (orgánulos que albergan enzimas oxidativos), lugar en el que vuelve a reaccionar con oxígeno para producir ácido glioxílico y peróxido de hidrógeno (la acción de la enzima catalasa catalizará la descomposición de este compuesto químico en oxígeno y agua).
Sin embargo el ácido glioxílico se transforma en glicina, aminoácido que se traspasa a la mitocondrias para formarse una molécula de serina a partir de dos de ácido glioxílico (este proceso conlleva la liberación de una molécula de dióxido de carbono).
La clorofila capta la luz solar, y provoca el rompimiento de la molécula de agua (H2O), separando el hidrógeno (H) del oxígeno (O); es decir, el enlace químico que mantiene unidos al hidrógeno y al oxígeno de la molécula de agua, se rompe por efecto de la luz.
El proceso genera oxígeno gaseoso que se libera al ambiente, y la energía no utilizada es almacenada en moléculas especiales llamadas ATP. En consecuencia, cada vez que la luz esté presente, se desencadenará en la planta el proceso descrito.

Fase secundaria u oscura

La fase oscura de la fotosíntesis es una etapa en la que no se necesita la luz, aunque también se realiza en su presencia. Ocurre en los cloroplastos y depende directamente de los productos obtenidos en la fase lumínica.
En esta fase, el hidrógeno formado en la fase anterior se suma al dióxido de carbono gaseoso (CO2) presente en el aire, dando como resultado la producción de compuestos orgánicos, principalmente carbohidratos; es decir, compuestos cuyas moléculas contienen carbono, hidrógeno y oxígeno.
Dicho proceso se desencadena gracias a una energía almacenada en moléculas de ATP que da como resultado el carbohidrato llamado glucosa (C6HI2O6), un tipo de compuesto similar al azúcar, y moléculas de agua como desecho.
Después de la formación de glucosa, ocurre una secuencia de otras reacciones químicas que dan lugar a la formación de almidón y varios carbohidratos más.
A partir de estos productos, la planta elabora lípidos y proteínas necesarios para la formación del tejido vegetal, lo que produce el crecimiento.
Cada uno de estos procesos no requiere de la participación de luz ni de la clorofila, y por ende se realiza durante el día y la noche. Por ejemplo, el almidón producido se mezcla con el agua presente en las hojas y es absorbido por unos tubitos minúsculos que existen en el tallo de la planta y, a través de éstos, es transportado hasta la raíz donde se almacena. Este almidón es utilizado para fabricar celulosa, el principal constituyente de la madera.
El resultado final, y el más trascendental, es que la planta guarda en su interior la energía que proviene del Sol.  Esta condición es la razón de la existencia del mundo vegetal porque constituye la base energética de los demás seres vivientes.
Por una parte, las plantas son para los animales fuente de alimentación, y, por otra, mantienen constante la cantidad necesaria de oxígeno en la atmósfera permitiendo que los seres vivos puedan obtener así la energía necesaria para sus actividades.
Si los químicos lograran reproducir la fotosíntesis por medios artificiales, se abriría la posibilidad de capturar energía solar a gran escala. En la actualidad se trabaja mucho en este tipo de investigación. Todavía no se ha logrado sintetizar una molécula artificial que se mantenga polarizada durante un tiempo suficiente para reaccionar de forma útil con otras moléculas, pero las perspectivas son prometedoras.

Ruta de Hatch-Slack o de las plantas C4
En los vegetales propios de las zonas con clima tropical, donde la fotorrespiración podría revestir un problema de notable gravedad, se presenta un proceso diferente para captar el dióxido de carbono. En estas plantas se distinguen dos variedades de cloroplastos: existen unos que se hallan en las células internas, contiguos a los vasos conductores de las hojas, y otros que están en las células del parénquima clorofílico periférico, lo que se llama mesófilo. Es en este último tipo de cloroplasto en el que se produce la fijación del dióxido de carbono.
La molécula aceptora de este compuesto químico es el ácido fosfoenolpirúvico (PEPA), y la enzima que actúa es la fosfoenolpiruvato carboxilasa, que no se ve afectada por una alta concentración de oxígeno.
Partiendo del ácido fosfoenolpirúvico y del dióxido de carbono se genera el ácido oxalacético, constituido por cuatro carbonos (es de aquí de donde proviene el nombre de plantas C4). El susodicho ácido se transforma en ácido málico, y este pasa a los cloroplastos propios de las células internas a través de los plasmodesmos.
En estos se libera el dióxido de carbono, que será apto para proseguir el ciclo de Calvin. A consecuencia de ello, en estas plantas no se produce ningún tipo de alteración a consecuencia de la respiración.
Reacciones dependiente de la luz
En el cloroplasto, los pigmentos están estrechamente asociados a proteínas y se alojan en la bicapa lipídica de los tilacoides. Según el modelo admitido actualmente, estos complejos proteína-clorofila se encuentran empaquetados formando unidades denominadas fotosistemas.
Cada unidad contiene de 200 a 400 moléculas de pigmento que tienen por finalidad captar la luz como una antena, forman el llamado complejo antena. Cuando la energía de la luz se absorbe por uno de los pigmentos de la antena, pasa de una molécula a otra de pigmento del fotosistema hasta que alcanza una forma especial de clorofila a que constituye el centro de reacción del fotosistema.
Los pigmentos antena son los encargados de absorber la energía lumínica y transferirla por resonancia al centro de reacción. Al recibir esta energía, la clorofila del centro de reacción pierde un electrón, que es transferido a una serie de transportadores de electrones. Los transportadores actúan en cadena, captando el electrón (y por tanto reduciéndose) y seguidamente cediéndolo (y por tanto oxidándolo) a la siguiente molécula.
También los carotenoides, que se encuentran íntimamente asociados con las clorofilas de los complejos antena, captan energía en sus longitudes de onda características y la transfieren a las clorofilas (aunque con menos eficiencia); tienen además una función protectora, ya que absorben excesos de energía que podrían dar lugar a la formación de compuestos nocivos.  
Los datos actuales indican que hay dos tipos de fotosistemas. Los dos fotosistemas se diferencian en sus proporciones de clorofila a y b, en las características de sus centros de reacción, y en los transportadores de electrones que los acompañan.
En el fotosistema I (FS I) la molécula reactiva de clorofila a se denomina P700, ya que uno de los máximos, en la curva de absorción es en los 700 nm, longitud de onda ligeramente mayor que el pico normal de la clorofila a. P700 no es una clorofila diferente, sino que está formado por dos moléculas de clorofila a que están unidas.
Estas propiedades diferentes se deben a la asociación con una proteína en la membrana del tilacoide y a su posición con respecto a otras moléculas. Este FS I se localiza, casi exclusivamente, en las lamelas estromales y en la periferia de los grana.
El Fotosistema II (FS II) también contiene una molécula de clorofila a reactiva, denominada P680, que absorbe preferentemente a 680 nm y se localiza, preferentemente, en las lamelas granales (grana). Es decir, los dos tipos de fotosistemas se encuentran espacialmente separados en las membranas tilacoidales.  
Durante las reacciones de la fase lumínica los dos fotosistemas actúan coordinadamente. La energía absorbida (1 fotón) por el FS I es transferida por el complejo antena hasta su centro de reacción lo provoca la pérdida de un electrón del P700, que queda entonces en un estado inestable, con un “hueco” electrónico que será “rellenado” por un electrón procedente del FS II.
El electrón perdido por el P700 pasa a una cadena de transportadores presente en la membrana tilacoidal que se van reduciendo (al aceptar el electrón) y oxidando (al transferirlo) sucesivamente, con un nivel energético menor en cada paso. Luego de varios compuestos intermedios poco conocidos (muchos de ellos ferrosulfoproteínas sin grupo hemo: FX, FB, FA), el electrón pasa a la ferredoxina, y por último a la ferredoxin NADP+ oxidorreductasa que reduce al NADP+ (forma oxidada del NADPH), según la siguiente reacción:  
NADP+ + 2 e¯ + H+  -------------------------------     NADPH
                                          
Como se observa, para que se produzca esta reacción hace falta un protón, que procede del espacio intratilacoidal, y dos electrones, cedidos por el P700, razón por la cual el flujo electrónico del FS I deberá tener lugar dos veces para reducir cada molécula de NADP+, es decir, deberán ser absorbidos 2 fotones por el FS I para que se liberen 2 electrones.  
El FS I funciona así como un fuerte reductor, capaz de producir NADPH, que será utilizado en las reacciones de la fase oscura para reducir el CO2 a carbono orgánico.
Por otra parte, cuando la energía luminosa (un fotón) incide sobre el fotosistema II y es transferida en último término hasta la molécula P680 de clorofila a, de su centro de reacción, provoca que un electrón de la molécula P680 sea impulsado a un nivel energético superior, quedando P680 en un estado inestable. El electrón se transfiere luego a una primera molécula aceptora de electrones, la feofitina, que capta electrones con un nivel electrónico superior al que puede tener la clorofila a.
El electrón desciende por una cadena de transporte electrónico formada por transportadores de nivel energético sucesivamente menor: plastoquinona (PQ), citocromo bf (cit bf), y plastocianina (PC) De este último compuesto, el electrón pasa a ocupar el “hueco” electrónico del P700, que de esta manera recupera su estado normal y queda listo para volver a absorber energía y reiniciar el proceso. En el caso del P680, su “hueco” electrónico será ocupado por un electrón procedente de la oxidación del agua.  


El P680 se comporta como un fuerte oxidante que, en su estado inestable es capaz de inducir la oxidación del agua (fotólisis del agua), en la que se desprende oxígeno (O2) como puede verse en la siguiente reacción:  
                                               2 H2 -------------------------------------   O2 + 4H+ + 4e¯ 
A través de ciertos transportadores poco conocidos, los electrones liberados aquí pasan a ocupar el hueco electrónico del P680, que queda así listo para volver a absorber energía. Los protones que se liberan pasan a acumularse en el espacio intratilacoidal, de donde proceden los H+ necesarios para reducir al NADP+.
Durante el transporte de electrones entre el FS II y el FS I, concretamente cuando pasan desde la PQ a los cit bf se libera energía que sirve para bombear protones desde el estroma hacia el espacio intratilacoidal (lumen).
Esto hace que este espacio se vaya acidificando como consecuencia (1) de la acumulación de los protones que pierde el agua al oxidarse y (2) con los protones que se transfieren desde el estroma. La concentración de protones es este compartimiento pasa a ser mucho mayor que en el estroma, y se genera de esta manera un potencial de membrana. Se establece, por lo tanto, un gradiente de protones a través de la membrana tilacoidal.
Los complejos de ATP sintetasa, dispuestos en la membrana tilacoidal, proporcionan un canal por el cual los protones pueden fluir a favor del gradiente, de nuevo hacia el estroma. Al hacerlo, la energía potencial del gradiente conduce a la síntesis de ATP a partir del ADP y fosfato, en un proceso quimiostático  característico de la fase luminosa denominado fotofosforilación no cíclica. Por cada molécula de ATP formada, dos electrones deben viajar por la cadena de transporte electrónico, desde el FS II al FS I.
Resumiendo, durante la fotofosforilación no cíclica, otros tres procesos se están produciendo simultáneamente:
  1. Los encuentra en la molécula de agua, a la cual se le arrancan los dos electrones y luego se parte en protones y oxígeno.
  2. Una dosis adicional de energía luminosa es captada por la molécula reactiva de clorofila (P700) del FS I. La molécula se oxida y los electrones son lanzados a un aceptor de electrones primario, a partir del cual descienden hacia el NADP+. Dos electrones y un protón se combinan con el NADP+ para formar NADPH.
  3. Los electrones separados de la molécula P700 del FS I son sustituidos por los electrones que fueron captados por el aceptor primario de electrones del FS II y que han descendido por la cadena de transporte electrónico.
  4. La molécula de clorofila P680, habiendo perdido dos electrones, busca ávidamente repuestos.
Por lo tanto, cuando hay luz, se produce un flujo continuo de electrones:

Agua 
FS II 
FS I 
NADP+ 

Para que dos electrones del agua sean captados por el NADP+ hacen falta 4 fotones (2 que son absorbidos por el FS II y otros 2 que lo son por el FS I).
El recorrido de los electrones en el FS I puede seguir también un camino cíclico, regresando el electrón del P700 a esta misma molécula (a través de los cit bf y la PC); en este caso también se produce un bombeo de protones al espacio intratilacoidal que permite la síntesis de ATP adicional (fotofosforilación cíclica), pero que no generará poder reductor, ya que los electrones no llegan al NADP+, ni se liberará oxígeno, porque no podrá haber oxidación del agua.

En la primera fase de la fotosíntesis, la energía de la luz se convierte en energía eléctrica -el flujo de electrones- y la energía eléctrica se convierte en energía química que se almacena en los enlaces del NADPH (gran poder reductor) y ATP (alto contenido energético). En la segunda fase de la fotosíntesis, esta energía se usa para reducir el carbono y sintetizar glúcidos sencillos

Las células fotosintéticas obtienen el carbono del CO2. Las células de las algas obtienen el CO2 directamente del agua que las rodea. En las plantas, en cambio, el CO2 llega a las células a través de unos poros especializados, llamados estomas, que se encuentran en las hojas y tallos verdes.

Las reacciones de la segunda fase de la fotosíntesis requieren la presencia de las moléculas NADPH y ATP, que sólo se forman en presencia de luz. Sin embargo, mientras haya disponibilidad de estas moléculas, estas reacciones pueden producirse, independientemente de si hay luz o no. Por eso se denominan reacciones “independientes” de la luz.

2 comentarios: